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Lineages may diversify when they encounter available ecological niches.
Adaptive divergence by ecological opportunity often appears to follow the
invasion of a new environment with open ecological space. This evolution-
ary process is hypothesized to explain the explosive diversification of
numerous Australian vertebrate groups following the collision of the
Eurasian and Australian plates 25 Mya. One of these groups is the pythons,
which demonstrate their greatest phenotypic and ecological diversity in
Australo-Papua (Australia and New Guinea). Here, using an updated and
near complete time-calibrated phylogenomic hypothesis of the group, we
show that following invasion of this region, pythons experienced a
sudden burst of speciation rates coupled with multiple instances of acceler-
ated phenotypic evolution in head and body shape and body size. These
results are consistent with adaptive radiation theory with an initial rapid
niche-filling phase and later slow-down approaching niche saturation. We
discuss these findings in the context of other Australo-Papuan adaptive radi-
ations and the importance of incorporating adaptive diversification systems
that are not extraordinarily species-rich but ecomorphologically diverse to
understand how biodiversity is generated.
1. Introduction
Lineages that encounter multiple available ecological niches may ultimately
diversify to fill this ecological space, a process known as adaptive radiation
[1,2]. This results in both an increase in speciation rates as the lineages diversify
and the evolution of novel phenotypes as they adapt to the new ecological
niches [3–5]. Colonization of an environmentally diverse region with less com-
petition is a common precursor to adaptive radiation, and it has resulted in
many spectacular radiations, both at small geographical scales [6,7] and
when continents approach each other—facilitating biological exchanges [8–11].

Australo-Papua, the region comprising Australia, New Guinea and sur-
rounding islands, broke apart completely from Antarctica in the early Eocene
(around 45 Mya) and then began a long period of isolation from other major
landmasses [12,13]. This time and isolation allowed for the diversification of
many animal and plant groups including the iconic Australian marsupials and
Eucalyptus trees, amongmanyothers [14–17]. However, manyof themost diverse
and emblematic groups in the region are descended frommuchmore recent colo-
nization events from Asia, coinciding with the collision of the Eurasian and
Australian plates in the Oligocene around 25 Mya [18–20]. Squamate reptiles
are extraordinarily diverse in the Australo-Papua region and the vast majority
of this diversity is comparatively recent [19]. For example, agamid lizards, moni-
tor lizards, blind snakes, elapid snakes and pythons are all groups that arrived to
Australo-Papua probably sometime in the late Palaeogene and early Neogene
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(20–30 Mya) and then diversified in both species number and
ecological strategies [19,21–26].

Pythons are a clade of 40 constrictor snakes that display a
remarkable level of ecomorphological diversity [25]. They
have diversified into a number of ecomorphs that appear to
be driven by microhabitat specialization, which is supported
by findings of clade-wide convergence in morphology and
ecology with New World boas and other snake lineages
[27]. Despite being found from Africa to Australia, most of
the species and ecological diversity are found east of
Wallace’s line in Australo-Papua. A recent study showed
that pythons likely originated in Asia and later experienced
a dramatic burst in morphological evolution accompanied
by diverging ecological specialization when they crossed
Wallace’s line around 23 Mya [25]. This is consistent with
adaptive radiation induced by ecological opportunity upon
colonization of a new environment with open ecological
niches [9].

Phenotypic and ecological aspects of python adaptive
radiation have been well studied but the patterns of lineage
diversification require further investigation. It is now possible
to identify the signatures in phylogenetic trees left from evol-
utionary processes that can change rates of diversification
[28,29], like adaptive radiation in response to ecological
opportunity [9,30]. Theory predicts that when this happens
there may be a sudden increase in speciation rates followed
by a subsequent slow-down coinciding with niche space fill-
ing, termed diversity-dependent (DD) diversification [31,32].
Here, we implement a variety of lineage diversification ana-
lyses to investigate if pythons experienced an increase in
speciation when they colonized Australo-Papua followed by
a subsequent slow-down, which is expected if they adap-
tively radiated. However, because diversification patterns
alone can fit a variety of evolutionary scenarios [33], we
also investigate how rates of phenotypic evolution changed
upon Australo-Papuan invasion. Although taxonomic diver-
sification and phenotypic evolution are not necessarily
coupled in adaptive diversification [34,35], synchronicity of
these patterns with biogeographic milestones provides valu-
able evidence for the role of ecological opportunity in the
generation of biodiversity.
2. Methods
Weuse a range ofmethods to detect diversification patterns consist-
ent with adaptive radiation. To test our hypotheses on a well-
sampled and updated phylogenetic tree with recent changes in
python taxonomy [36,37], we built a species tree with Astral III
v. 5.7.8 [38] using the gene trees for 33 species from 376 nuclear
exons from Esquerré et al. [25], as well as a mitochondrial
genome gene tree including 32 of those species and five species
not sampled for the nuclear exons and not included in Esquerré
et al. [25]. We time-calibrated this tree using MCMCTree from the
PAML 4.9 package [39], using the dates inferred by Esquerré
et al. as secondary calibrations. See electronic supplementary
material for details. This time-calibrated tree contains 37 of the 40
(93%) currently recognized species: 27 for the Australo-Papuan
clade, eight for the Afro-Asian clade and the two Malayopython
species from Southeast Asia.

During an adaptive radiation, we often expect early bursts of
diversification as lineages diversify to fill available niches. To
visualize the diversification patterns, we constructed lineage
through time (LTT) plots [40] of the Pythonidae and the
Australo-Papuan clade separately and of the 95% confidence
interval (CI) of 1000 simulated trees under a pure-birth model
and an early burst model (with a γ-statistic of −1). This was
done with the functions ltt95 and pbtree from the R package phy-
tools [41]. As an additional more powerful tool to test the
hypothesis that reaching Australo-Papua resulted in an increased
rate of diversification with subsequent slow-down as a conse-
quence of niche filling, we fitted constant rate (CR) and DD
birth–death models to the Pythonidae and Australo-Papuan
clade trees and performed a bootstrap-likelihood ratio test of
DD against CR and computed the power of the test. This was
done using the R package DDD [42,43].

In an attempt to identify diversification patterns associated
with crossing biogeographic lines, we implemented a method
based on graph theory that estimates the spectral density profile
of a tree based on its Laplacian graph [44]. These spectral den-
sities are used to identify different ‘modalities’ that can reflect
distinct diversification patterns. In addition to fitting a model
with the optimal number of modalities (i), we fitted models
with 1 to (i) modalities to identify modalities in the tree that
were consistent across all models. This was performed using
the R package RPANDA [45]. Finally, we implemented the
recently developed Bayesian method cladogenetic diversification
rate shift (CLaDS) that aims to infer small changes in diversifica-
tion rates by allowing rates to change at every speciation event
[46,47]. At each speciation event in the tree, the two daughter
lineages inherit speciation (λ) and extinction (μ) rates drawn
from the joint probability distribution parametrized by the par-
ental lineage’s λ and μ. We implemented the CLaDS2 model
that allows λ and μ to vary while maintaining the turnover con-
stant and ran three MCMC sampling every 200 iterations until
the Gelman statistic [48] was under 1.05 for every parameter,
after discarding 25% of the chains as burnin. We specified a
sampling fraction of 93%. This was run on the Julia package
PANDA which implements a new version of CLaDS that runs
much faster and more efficiently using data augmentation
within a Bayesian MCMC [45,47].

To determine if shifts in lineage diversification rates were
coupled with shifts in phenotypic evolution rates, we used
the R package RRPhylo [49]. This program uses phylogenetic
ridge regression to estimate branch-specific evolution rates and
finds shifts towards higher or lower evolution rates across the
phylogeny [49].

Linear measurements of body shape data and landmark coor-
dinates for head shape data were taken from previous studies
[25,27,50], which were size corrected (corrected for scale) using
Procrustes superimposition for head shape landmark coordinates
and log shape ratios for linear body shape measurements [50]. We
did not perform allometric corrections as allometry is extremely
variable and likely adaptive in pythons, and we see it as part of
the evolutionary diversity [50]. Due to small morphological
sampling sizes (n < 5) that resulted in overestimation of head and
body shape evolutionary rates within the Australo-Papuan clade,
we conservatively removed Liasis savuensis and Simalia clastolepis.
We also analysed maximum snout–vent length as a measure of
maximum body size. These data were obtained from the literature
or from our own specimen measurements when these were larger
than previously reported. With the analysis of maximum body
size,we used the same character as a covariate, to avoidmisleading
inferences of increased evolutionary rates in lineages with larger
body sizes.
3. Results
In the LTT plot (figure 1), the Pythonidae as a whole falls well
within a pure-birth model of diversification, whereas the
Australo-Papuan clade clearly fits an early burst pattern.
For the Australo-Papuan clade, the maximum log-likelihood
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Figure 1. (a) LTT plots of the Pythonidae and the Australo-Papuan clade. Solid lines represent the observed tree and the dotted lines the 95% CI of 1000 simulated
trees under a pure-birth model and under an early burst model. (b) LLRs inferred by DDD, for the Australo-Papuan clade and bootstrap simulations. (c) Pythonidae
tree painted with the optimal nine diversification modalities estimated from its spectral distances profile. (d ) The same tree with branches painted according to
estimated speciation rates from CLaDS, as the legend on the bottom right.
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for a CR model is −91.71, and for a DD model is −86.95. The
test rejects the CR model ( p = 0.049) which has a power of
0.88. A visual inspection of the log-likelihood ratios (LLR;
figure 1) shows how the LLR for the Australo-Papuan tree
lies closer to the mode of bootstrap simulations when fitting
a DD model than a CR model.

Using the spectral distances profile from the Pythonidae
tree, we identify 12 distinct modalities of diversification
(figure 1; electronic supplementary material, figure S1). Test-
ing varied numbers of possible modalities (from 1 to 12), we
consistently recovered an independent modality assigned to
the base of the Australo-Papuan radiation (electronic sup-
plementary material, figure S1). The CLaDS model finds an
increase in diversification rates in the Australo-Papuan
radiation (figure 1).

The analysis on branch-specific rates of phenotypic evol-
ution shows a trend towards increased rates of evolution in
the Australo-Papuan radiation compared to the rest
(figure 2). For head shape, there are six shifts towards
higher rates, all within the Australo-Papuan radiation, and
one shift towards a slower rate, which is at the base of the
Afro-Asian radiation. For body shape, there are five shifts
towards higher rates, all within the Australo-Papuan radi-
ation, which also includes a single rate towards lower rates.
For maximum size, the three shifts towards higher rates are
within the Australo-Papuan radiation and the three towards
lower rates are within the Afro-Asian radiation (figure 2).
4. Discussion
After crossing Wallace’s line into Australo-Papua, pythons
evolved an array of new phenotypes to match new ecological
roles that were possibly never realized in Africa or Asia [25].
Aspidites evolved a semi-fossorial ecomorph almost losing
the thermoreceptive organs that all other pythons have, with
a phenotype so different that morphology-based phyloge-
netics placed it as the sister to all other pythons [51]. Water
pythons (Liasis mackloti complex) and tree pythons (Morelia
viridis complex) evolved the most specialized aquatic and
arboreal lifestyles, respectively [27], and dwarf pythons
(Antaresia) diverged towards the smallest body sizes seen in
the family [36]. Arrival in Australo-Papua resulted in con-
siderable ecomorphological space expansion [25]. Here we
now show that this colonization event led to increased rates
of lineage diversification and phenotypic evolution—a pattern
consistent with adaptive radiation.

Our results point to an increased burst of speciation
when pythons arrived in Australo-Papua, with a gradual
slow-down towards the present (figure 1). We find that diver-
sification rates have been higher in Australo-Papua and that
the diversification mode lies closer to a DD model than a
CR (figure 1). We find support for a unique diversification
modality, as well as increased speciation rates, at the base
of the Australo-Papuan clade (figure 1). These patterns are
consistent with niche filling or diversity dependence
[8,52–54]. However, our lineage diversification inferences on
pythons acquire a lot more evolutionary significance when
combined with what we know about their biogeographic
and phenotypic evolution (figure 2).

Aside from an increase in speciation rates, early evolution
of morphological diversity is also an important property of
adaptive radiation, as has been postulated for eutherian mam-
mals [55], Caribbean anole lizards [56] and Darwin’s famous
finches [57]. Although this pattern seems to be rare in empiri-
cal data [58], Australo-Papuan pythons rapidly evolved a
variety of phenotypes soon after crossing Wallace’s line [25].
Importantly, this considerable evolution of novel and diver-
ging morphologies has been shown to match adaptations to
a variety of different microhabitats [27]. The combination of
early divergence into different ecotypes with an increase in
speciation rates upon crossing an important biogeographic
line is strongly indicative of Australo-Papua providing eco-
logical opportunity for adaptive radiation. After the early
ecomorphological divergence and as the speciation rates
slow-down, speciation events towards the tip more likely rep-
resent allopatric speciation since these ecologically similar
species are distributed in allopatry [59].
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The main caveat of our findings is the low statistical power
derived from the small number of tips in the python phylo-
geny, which is why it is important to interpret lineage
diversification patterns of small radiations in conjunction
with other lines of evidence. Adaptive radiation resulting in
hundreds of biologically diverse species within a few million
years provides truly fascinating opportunities for evolutionary
biologists, but these are rare [2,60]. Most groups radiate into
much more modest clades, for example, the famous Darwin’s
finches. This clade comprises only 14 species that diversified
across the Galapagos volcanic archipelago and evolved
different beak shapes that exploit different food resources
[57]. Their diversification was rapid and adaptive, but due to
reasons likely involving time, geographical area and available
ecological niches they have not evolved into a particularly
species-rich clade. Furthermore, animals like large constrictor
snakes occupy high trophic levels where niche availability is
more limited [61], and we should not expect apex predators
to diversity into a myriad of sympatric species. Boas [27],
monitor lizards [26] and different carnivoran mammal
radiations [62], also exhibit patterns of adaptive radiation
without diversifying into hundreds of species. Adaptive radi-
ations resulting in a more limited number of species that
diverged and specialized seem to be far more common than
the extraordinary text-book examples of Caribbean anoles
and African lake cichlids [54,63,64]. Incorporating these
clades as models to understand the processes that generate
biodiversity is vital for a comprehensive treatment of the
study of adaptive radiation.

There can be alternative explanations for the speciation
patterns we find in pythons. Speciation rates are not necess-
arily linked to an enhancement in ecological space [65,66],
and slow-downs in diversifications rates are common
throughout the tree of life and are not necessarily related to
biotic factors [28,29]. Time dependence, protracted speciation
and tree reconstruction methodological issues can all result in
inferred diversification slow-downs [28]. Moreover, branch-
ing patterns themselves have been shown ineffective in
discriminating between DD and time-dependent diversifica-
tion models effectively [67]. Finally, the higher diversity of
pythons in Australo-Papua might be related to more stochas-
tic factors than ecological opportunity. However, the repeated
radiation events among squamate reptiles after invading
Australo-Papua [64] offer strong evidence that crossing
these biogeographic barriers results in increased diversifica-
tion and rates of trait evolution. Most of the snake and
large lizard diversity in Australo-Papua shares the python’s
history of an Afro-Asian origin but reaches their highest
diversity after the crossing of Wallace’s line around
20–30 Mya [19,21,22,24–26,68]. This includes, among others,
the ecomorphologically diverse agamid and varanid lizards
[22,26,69], and all of the region’s snake clades, including
the mega-diverse elapids and the cryptic blindsnakes
[21,24,25,68]. Moreover, our findings of matching increased
phenotypic evolutionary rates and lineage diversification
also strongly support a role of ecological opportunity.

Australo-Papua offers a large and environmentally
heterogeneous area, which combined with the presence of
fewer similar organisms competing for niche space, offered
ample opportunity for ecological specialization and also allo-
patric speciation [70,71]. This study adds to the body of
evidence showing that Australo-Papua is an incredible land
of ecological opportunity with much of its extraordinary con-
temporary diversity drawn from Laurasian rather than
Gondwanan origins.
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